四三次方程式求解公式

\[Ax^4 + Bx^3 + Cx^2 + Dx + E = 0 \]

同除 \(A \) \[\Rightarrow \quad x^4 + \frac{B}{A} x^3 + \frac{C}{A} x^2 + \frac{D}{A} x + \frac{E}{A} = 0 \]

即 \[\Rightarrow \quad x^4 + B'x^3 + C'x^2 + D'x + E' = 0 \]

\(\boxdot \) 原則：
以 \((x + B'/4) \) 表之 \(\Rightarrow \quad (x + B'/4)^4 + p(x + B'/4)^2 + q(x + B'/4) + r = 0 \)
求解 \(\Rightarrow \quad t^4 + pt^2 + qt + r = 0 \) 四根
則 \(t_1 - \frac{B'}{4}, t_2 - \frac{B'}{4}, t_3 - \frac{B'}{4}, t_4 - \frac{B'}{4} \) 即得 \(x \) 的四個根

\[D = 4(p^2 + 12r)^3 - (2p^3 - 72pr + 27q^2)^2 \]

\(\boxdot \) 判別式：
\[
\begin{cases}
D > 0 & \Rightarrow \text{四實根 or 四虛根} \\
D = 0 & \Rightarrow \text{至少兩相等實根} \\
D < 0 & \Rightarrow \text{兩實根兩虛根}
\end{cases}
\]

【方法一】尤拉(Euler)方法

解 \(x^4 + px^2 + qx + r = 0 \)

\[\begin{align*}
1. \text{利用四次方程式及} \quad & 2x = u + v + w \Rightarrow \text{比較係數} \\
2. \text{利用三次方程式解係數方程式} (u^2 \cdot v^2 \cdot w^2 \text{的值}) \\
3. \text{再帶回} \quad & x = \frac{u + v + w}{2} \text{求解四次方程式四個根}
\end{align*} \]
【解】：1° 設 \(2x = u + v + w\)

平方：
\[4x^2 = (u^2 + v^2 + w^2) + 2(uv + vw + wu)\]

移項再平方：
\[16x^4 - 8x^2(u^2 + v^2 + w^2) + (u^2 + v^2 + w^2)^2 = 4(u^2v^2 + v^2w^2 + w^2u^2) + 8uvw(u + v + w)\]

\[16x^4 - 8x^2(u^2 + v^2 + w^2) + (u^2 + v^2 + w^2)^2 = 4(u^2v^2 + v^2w^2 + w^2u^2) + 8uvw(2x)\]

\[x^4 - \frac{1}{16}(u^2 + v^2 + w^2)x^2 - (uvw)x + \frac{1}{16}[u^4 + v^4 + w^4 - 2(u^2v^2 + v^2w^2 + w^2u^2)] = 0\]

\[x^4 + p \cdot x^2 + q \cdot x + r = 0\]

\[
\begin{aligned}
p &= -\frac{1}{2}(u^2 + v^2 + w^2) \\
q &= -uvw \\
r &= \frac{1}{16}[u^4 + v^4 + w^4 - 2(u^2v^2 + v^2w^2 + w^2u^2)]
\end{aligned}
\]

2° 比較係數：
\[
\begin{aligned}
p &= -\frac{1}{2}(u^2 + v^2 + w^2) \\
q &= -uvw \\
r &= \frac{1}{16}[u^4 + v^4 + w^4 - 2(u^2v^2 + v^2w^2 + w^2u^2)]
\end{aligned}
\]

\[
\begin{aligned}
u^2 + v^2 + w^2 &= -2p \\
u^2v^2 + v^2w^2 + w^2u^2 &= p^2 - 4r \\
u^2v^2w^2 &= q^2
\end{aligned}
\]

3° 可解出

利用三次方根與係數知

4° 此時，\(u^2, v^2, w^2\) 爲 \(z^3 + 2p \cdot z^2 + (p^2 - 4r) \cdot z - q^2 = 0\) 之三根

\[
\begin{aligned}
a &= 2p \\
b &= p^2 - 4r \\
c &= -q^2
\end{aligned}
\]

令

\[
\begin{aligned}
\begin{cases}
x = \frac{1}{2}(u + v + w) \\
or \quad \frac{1}{2}(u - v - w) \\
or \quad \frac{1}{2}(-u + v - w) \\
or \quad \frac{1}{2}(-u - v + w)
\end{cases}
\end{aligned}
\]

5° 得
【方法二】笛卡爾(Descartes)方法

解 $x^4 + px^2 + qx + r = 0$

精神：
1. 強迫分解出四次式為兩個二次式乘積
2. 利用比較係數解出 k, l, m 三者關係式(為三次式)
3. 利用公式(II)解出 k 及 l, m
4. 將結果代入兩個二次式中解出四個根

【證明】：
1° 設 $x^4 + px^2 + qx + r = (x^2 + kx + l) \cdot (x^2 - kx + m) = 0 \cdots (1)$

乘開比較係數：
\[
\begin{cases}
 m + l - k^2 = p \cdots (2) \\
 k \cdot (m - l) = q \cdots (3) \\
 l \cdot m = r \cdots (4)
\end{cases}
\]

由 (2), (3) 解出 $m, l = \left(\frac{q + pk + k^3}{2k}, -\frac{q + pk + k^3}{2k}\right) \cdots (5)$ 代入 (4)

2° $\frac{q + pk + k^3}{2k} \times \frac{-q + pk + k^3}{2k} = (k^3 + pk)^2 - \frac{q^2}{4k^2} = r$

$\Rightarrow \quad (k^2)^3 + 2p(k^2)^2 + (p^2 - 4r)(k^2) - q^2 = 0$

$\Rightarrow \quad k^2 = z \cdots (6)$

$\Rightarrow \quad k^2 \text{ 爲 } z^3 + 2p \cdot z^2 + (p^2 - 4r) \cdot z - q^2 = 0 \text{ 之一根}$

代入公式 (II) 可得三根 z_1, z_2, z_3

3° 利用 (5) 及 (6) 解出 k, l, m 再代回 (1) 式

利用二次方公式解出
所得即為四次方程式之解
【方法三】費拉里(Ferrari)方法

解 $x^4 + px^2 + qx + r = 0$

$$1\text{同加}x^2(y + \frac{y^2}{4})\text{强迫分解出四次式為兩個多項式的平方差}$$

精神:

2. 利用比較係數解出y的三次式
3. 利用公式(II)解出y
4. 將y代入二次式中解出四個根

【證明】
1° $x^4 + px^2 + qx + r = 0 \Rightarrow x^4 = -px^2 - qx - r$

兩邊同加 $x^2y + \frac{y^2}{4}$ \quad $\Rightarrow x^4 + (x^2y + \frac{y^2}{4}) = -px^2 - qx - r + (x^2y + \frac{y^2}{4})$

兩邊配方 $(x^2 + \frac{y}{2})^2 = (y - p)x^2 - qx + (\frac{y^2}{4} - r) \cdots (1)$

∴ 是完全平方 \quad ∴ 必是完全平方

2° 故判別式 $D = (-q)^2 - 4(y - p) \cdot (\frac{y^2}{4} - r) = 0$

展開得 $y^3 - p \cdot y^2 - 4r \cdot y + (4pr - q^2) = 0$

代入公式(II) 得三根 y_1, y_2, y_3 \quad ($y \neq p$)

3° (1) 式可整理得 $(x^2 + \frac{y}{2})^2 = (y - p) \left[x - \frac{q}{2(y - p)} \right]^2 \cdots (2)$

$$x^2 + \frac{y}{2} = \pm \sqrt{(y - p)} \cdot \left[x - \frac{q}{2(y - p)} \right]$$

4° 將y_1, y_2, y_3上式結果代入 $x^2 \mp \sqrt{(y - p)} x + (\frac{y}{2} \pm \frac{q}{2\sqrt{(y - p)}}) = 0$

並利用二次方程式公式解解x，

所得即為 $x^4 + px^2 + qx + r = 0$ 四次方程式之解

資料整理: 103 班 23 號 張林承